Number of Connected Components in an Undirected Graph
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
0 3
| |
1 --- 2 4
Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.
Example 2:
0 4
| |
1 --- 2 --- 3
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.
Note: You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
LintCode 类似题:Find the Connected Component in the Undirected Graph
http://www.jiuzhang.com/solutions/find-the-connected-component-in-the-undirected-graph/
Tips:
解法1:并查集(UNION-FIND)
for(int[] edge : edges) 查找每个edge两边的nodes的father,如果发现还没有合并,就Union,把第一个的father设为第二个,即map.put(fa_x, fa_y);
用n来代表最后的联通块个数,所以合并一次就要n--。最后返回n即可。
解法2:DFS
- 解法3:BFS
Code:
解法1(并查集):
public class Solution {
public int countComponents(int n, int[][] edges) {
if (n <= 1) {
return n;
}
HashMap<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++) {
map.put(i, i);
}
for (int[] edge : edges) {
int fa_x = find(map, edge[0]);
int fa_y = find(map, edge[1]);
if (fa_x != fa_y) {
map.put(fa_x, fa_y);
n--;
}
}
return n;
}
private int find(HashMap<Integer, Integer> map, int x) {
int father = map.get(x);
while (father != map.get(father)) {
father = map.get(father);
}
return father;
}
}
Union Find 模板:
HashMap<Integer, Integer> map = new HashMap<>();
int find(HashMap<Integer, Integer> map, int x) {
int father = map.get(x);
while (father != map.get(father)) {
father = map.get(father);
}
return father;
}
void union(int x, int y) {
int fa_x = find(map, edge[0]);
int fa_y = find(map, edge[1]);
if (fa_x != fa_y) {
map.put(fa_x, fa_y);
}
}
解法2(DFS):
public class Solution {
public int countComponents(int n, int[][] edges) {
if (n <= 1)
return n;
Map<Integer, List<Integer>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
map.put(i, new ArrayList<>());
}
for (int[] edge : edges) {
map.get(edge[0]).add(edge[1]);
map.get(edge[1]).add(edge[0]);
}
Set<Integer> visited = new HashSet<>();
int count = 0;
for (int i = 0; i < n; i++) {
if (visited.add(i)) {
dfsVisit(i, map, visited);
count++;
}
}
return count;
}
private void dfsVisit(int i, Map<Integer, List<Integer>> map, Set<Integer> visited) {
for (int j : map.get(i)) {
if (visited.add(j))
dfsVisit(j, map, visited);
}
}
}
解法3(BFS):
public class Solution {
public int countComponents(int n, int[][] edges) {
if (n <= 1) {
return n;
}
List<List<Integer>> adjList = new ArrayList<List<Integer>>();
for (int i = 0; i < n; i++) {
adjList.add(new ArrayList<Integer>());
}
for (int[] edge : edges) {
adjList.get(edge[0]).add(edge[1]);
adjList.get(edge[1]).add(edge[0]);
}
boolean[] visited = new boolean[n];
int count = 0;
for (int i = 0; i < n; i++) {
if (!visited[i]) {
count++;
Queue<Integer> queue = new LinkedList<Integer>();
queue.offer(i);
while (!queue.isEmpty()) {
int index = queue.poll();
visited[index] = true;
for (int next : adjList.get(index)) {
if (!visited[next]) {
queue.offer(next);
}
}
}
}
}
return count;
}
}