Largest Divisible Subset
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
nums: [1,2,3]
Result: [1,2] (of course, [1,3] will also be ok)
Example 2:
nums: [1,2,4,8]
Result: [1,2,4,8]
Tips:
DP,复杂度O(n^2)。
两个循环,第二个循环是for(int j = i; j>=0; j--),也就是对i之前的所有数求count的最大值,以便求出遍历到i是可得到的最大值。
除了count数组外,还需要用一个pre数组来存储当前节点的最大因数。
Code:
public class Solution {
public List<Integer> largestDivisibleSubset(int[] nums) {
int n = nums.length;
int[] count = new int[n];
int[] pre = new int[n];
Arrays.sort(nums);
int max = 0, index = 0;
for (int i = 0; i < n; i++) {
count[i] = 1;
pre[i] = -1;
for (int j = i; j >= 0; j--) {
if (nums[i] % nums[j] == 0) {
if (count[i] < count[j] + 1) {
count[i] = count[j] + 1;
pre[i] = j;
}
}
}
if (count[i] > max) {
max = count[i];
index = i;
}
}
List<Integer> res = new ArrayList<>();
for (int i = 1; i < max; i++) {
res.add(nums[index]);
index = pre[index];
}
return res;
}
}