Encode String with Shortest Length

Given a non-empty string, encode the string such that its encoded length is the shortest.

The encoding rule is: k[encoded_string], where the encoded_string inside the square brackets is being repeated exactly k times.

Note:

  1. k will be a positive integer and encoded string will not be empty or have extra space.
  2. You may assume that the input string contains only lowercase English letters. The string's length is at most 160.
  3. If an encoding process does not make the string shorter, then do not encode it. If there are several solutions, return any of them is fine.

Example 1:

Input: "aaa"
Output: "aaa"
Explanation: There is no way to encode it such that it is shorter than the input string, so we do not encode it.

Example 2:

Input: "aaaaa"
Output: "5[a]"
Explanation: "5[a]" is shorter than "aaaaa" by 1 character.

Example 3:

Input: "aaaaaaaaaa"
Output: "10[a]"
Explanation: "a9[a]" or "9[a]a" are also valid solutions, both of them have the same length = 5, which is the same as "10[a]".

Example 4:

Input: "aabcaabcd"
Output: "2[aabc]d"
Explanation: "aabc" occurs twice, so one answer can be "2[aabc]d".

Example 5:

Input: "abbbabbbcabbbabbbc"
Output: "2[2[abbb]c]"
Explanation: "abbbabbbc" occurs twice, but "abbbabbbc" can also be encoded to "2[abbb]c", so one answer can be "2[2[abbb]c]".

Tips:

DP, 公式为

dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j])

注意每个循环内要找这个字符串自己是不是可以被简写。

复杂度: O(n^4) replaceAll 需要O(n)

Find pattern可以用KMP,算法附在后面

Codes:

public class Solution {
    public String encode(String s) {
        String[][] dp = new String[s.length()][s.length()];
        for (int l = 0; l < s.length(); l++) {
            for (int i = 0; i < s.length() - l; i++) {
                int j = i + l;
                String substr = s.substring(i, j + 1);
                if (l < 4) dp[i][j] = substr;
                else {
                    dp[i][j] = substr;
                    for (int k = i; k < j; k++) {
                        if ((dp[i][k] + dp[k + 1][j]).length() < dp[i][j].length()) dp[i][j] = dp[i][k] + dp[k + 1][j];
                    }
                    for (int k = 0; k < l; k++) {
                        String repeatStr = substr.substring(0, k + 1);
                        if (repeatStr != null && substr.length() % repeatStr.length() == 0 
                            && substr.replaceAll(repeatStr, "").length() == 0) {
                            String ss = substr.length() / repeatStr.length() + "[" + dp[i][i+k] + "]";
                            if(ss.length() < dp[i][j].length()) {
                            dp[i][j] = ss;
                            }
                        }
                    }
                }
            }
        }
        return dp[0][s.length()-1];
    }
}

KMP:

public class Solution {
    public String encode(String s) {
        if(s == null || s.length() <= 4) return s;

        int len = s.length();

        String[][] dp = new String[len][len];

        // iterate all the length, stay on the disgnose of the dp matrix
        for(int l = 0; l < len; l ++) {
            for(int i = 0; i < len - l; i ++) {
                int j = i + l;
                String substr = s.substring(i, j + 1);
                dp[i][j] = substr;
                if(l < 4) continue;

                for(int k = i; k < j; k ++) {
                    if(dp[i][k].length() + dp[k + 1][j].length() < dp[i][j].length()) {
                        dp[i][j] = dp[i][k] + dp[k + 1][j];
                    }
                }

                String pattern = kmp (substr);
                if(pattern.length() == substr.length()) continue; // no repeat pattern found
                String patternEncode = substr.length() / pattern.length() + "[" + dp[i][i + pattern.length() - 1] + "]";
                if(patternEncode.length() < dp[i][j].length()) {
                    dp[i][j] = patternEncode;
                }
            }
        }

        return dp[0][len - 1];
    }

    private String kmp (String s) {
        int len = s.length();
        int[] LPS = new int[len];

        int i = 1, j = 0;
        LPS[0] = 0;
        while(i < len) {
            if(s.charAt(i) == s.charAt(j)) {
                LPS[i ++] = ++ j;
            } else if(j == 0) {
                LPS[i ++] = 0;
            } else {
                j = LPS[j - 1];
            }
        }

        int patternLen = len - LPS[len - 1];
        if(patternLen != len && len % patternLen == 0) {
            return s.substring(0, patternLen);
        } else {
            return s;
        }
    }
}

results matching ""

    No results matching ""