LFU Cache
Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reaches its capacity, it should invalidate the least frequently used item before inserting a new item. For the purpose of this problem, when there is a tie (i.e., two or more keys that have the same frequency), the least recently used key would be evicted.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LFUCache cache = new LFUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.get(3); // returns 3.
cache.put(4, 4); // evicts key 1.
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
Tips:
需要用两个map存放keys和values,用一个linkedhashset存放出现的顺序。而创造node的时候以(count)为输入,同样count的放在一个node,进行每次操作时increaseCount。每次将新点加入成为第一个点(addToHead)。如果capacity不够,则选择head里的第一个点进行删除,如果head里只有一个key,那么移除head使下一位变成head。
head --- FreqNode1 ---- FreqNode2 ---- ... ---- FreqNodeN
| | |
first first first
| | |
KeyNodeA KeyNodeE KeyNodeG
| | |
KeyNodeB KeyNodeF KeyNodeH
| | |
KeyNodeC last KeyNodeI
| |
KeyNodeD last
|
last
Code:
public class LFUCache {
private Node head = null;
private int cap = 0;
private HashMap<Integer, Integer> valueHash = null;
private HashMap<Integer, Node> nodeHash = null;
public LFUCache(int capacity) {
this.cap = capacity;
valueHash = new HashMap<Integer, Integer>();
nodeHash = new HashMap<Integer, Node>();
}
public int get(int key) {
if (valueHash.containsKey(key)) {
increaseCount(key);
return valueHash.get(key);
}
return -1;
}
public void put(int key, int value) {
if ( cap == 0 ) return;
if (valueHash.containsKey(key)) {
valueHash.put(key, value);
} else {
if (valueHash.size() < cap) {
valueHash.put(key, value);
} else {
removeOld();
valueHash.put(key, value);
}
addToHead(key);
}
increaseCount(key);
}
private void addToHead(int key) {
if (head == null) {
head = new Node(0);
head.keys.add(key);
} else if (head.count > 0) {
Node node = new Node(0);
node.keys.add(key);
node.next = head;
head.prev = node;
head = node;
} else {
head.keys.add(key);
}
nodeHash.put(key, head);
}
private void increaseCount(int key) {
Node node = nodeHash.get(key);
node.keys.remove(key);
if (node.next == null) {
node.next = new Node(node.count+1);
node.next.prev = node;
node.next.keys.add(key);
} else if (node.next.count == node.count+1) {
node.next.keys.add(key);
} else {
Node tmp = new Node(node.count+1);
tmp.keys.add(key);
tmp.prev = node;
tmp.next = node.next;
node.next.prev = tmp;
node.next = tmp;
}
nodeHash.put(key, node.next);
if (node.keys.size() == 0) remove(node);
}
private void removeOld() {
if (head == null) return;
int old = head.keys.iterator().next();
head.keys.remove(old);
if (head.keys.size() == 0) remove(head);
nodeHash.remove(old);
valueHash.remove(old);
}
private void remove(Node node) {
if (node.prev == null) {
head = node.next;
} else {
node.prev.next = node.next;
}
if (node.next != null) {
node.next.prev = node.prev;
}
}
class Node {
public int count = 0;
public LinkedHashSet<Integer> keys = null;
public Node prev = null, next = null;
public Node(int count) {
this.count = count;
keys = new LinkedHashSet<Integer>();
prev = next = null;
}
}
}