Longest Increasing Path in a Matrix

Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

nums = [
  [9,9,4],
  [6,6,8],
  [2,1,1]
]
Return 4
The longest increasing path is [1, 2, 6, 9].

Example 2:

nums = [
  [3,4,5],
  [3,2,6],
  [2,2,1]
]
Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Tips:

To get max length of increasing sequences:

Do DFS from every cell
Compare every 4 direction and skip cells that are out of boundary or smaller
Get matrix max from every cell's max
Use matrix[x][y] <= matrix[i][j] so we don't need a visited[m][n] array
The key is to cache the distance because it's highly possible to revisit a cell

复杂度:

the DFS here is basically like DP with memorization. Every cell that has been computed will not be computed again, only a value look-up is performed. So this is O(mn), m and n being the width and height of the matrix.

To be exact, each cell can be accessed 5 times at most: 4 times from the top, bottom, left and right and one time from the outermost double for loop. 4 of these 5 visits will be look-ups except for the first one. So the running time should be lowercase o(5mn), which is of course O(mn).

Code:

public static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};

public int longestIncreasingPath(int[][] matrix) {
    if(matrix.length == 0) return 0;
    int m = matrix.length, n = matrix[0].length;
    int[][] cache = new int[m][n];
    int max = 1;
    for(int i = 0; i < m; i++) {
        for(int j = 0; j < n; j++) {
            int len = dfs(matrix, i, j, m, n, cache);
            max = Math.max(max, len);
        }
    }   
    return max;
}

public int dfs(int[][] matrix, int i, int j, int m, int n, int[][] cache) {
    if(cache[i][j] != 0) return cache[i][j];
    int max = 1;
    for(int[] dir: dirs) {
        int x = i + dir[0], y = j + dir[1];
        if(x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[i][j]) continue;
        int len = 1 + dfs(matrix, x, y, m, n, cache);
        max = Math.max(max, len);
    }
    cache[i][j] = max;
    return max;
}

普通DFS:(会超时)

    public class Solution {
        final int[][] dis = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
        public int longestIncreasingPath(int[][] matrix) {
            if (matrix.length == 0) return 0;
            int[][] flag = new int[matrix.length][matrix[0].length];
            int m = matrix.length, n = matrix[0].length;
            int max = 1;
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    max = Math.max(max, helper(matrix, i, j, m, n, flag, 1));
                    System.out.print(max);
                }
            }
            return max;
        }

        private int helper(int[][] matrix, int i, int j, int m, int n, int[][] flag, int cur) {
            if (flag[i][j] != 0) return cur;
            flag[i][j] = 1;
            int max = cur;
            for (int[] d : dis) {
                int x = i + d[0], y = j + d[1];
                if (x < 0 || y < 0 || x >= m || y >= n || matrix[x][y] <= matrix[i][j]) continue;
                int len = helper(matrix, x, y, m, n, flag, cur + 1);
                System.out.println(len);
                max = Math.max(max, len);

            }
            flag[i][j] = 0;
            return max;
        }
    }

results matching ""

    No results matching ""