Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Given matrix = [
[1, 0, 1],
[0, -2, 3]
]
k = 2
The answer is 2. Because the sum of rectangle [[0, 1], [-2, 3]] is 2 and 2 is the max number no larger than k (k = 2).
Note:
The rectangle inside the matrix must have an area > 0.
What if the number of rows is much larger than the number of columns?
Tips:
题意:求矩阵里K*K的矩阵里数和的最大值。
朴素的思想为,枚举起始行,枚举结束行,枚举起始列,枚举终止列。。。。。O(m^2 * n^2)
这里用到一个技巧就是,进行求和时,我们可以把二维的合并成一维,然后就变为求一维的解。
比如对于矩阵:
[1, 0, 1], [0, -2, 3]
进行起始行为0,终止行为1时,可以进行列的求和,即[1, -2, 4]中不超过k的最大值。
求和的问题解决完,还有一个是不超过k. 这里我参考了 https://leetcode.com/discuss/109705/java-binary-search-solution-time-complexity-min-max-log-max 的方法
使用了二分搜索。对于当前的和为sum,我们只需要找到一个最小的数x,使得 sum – k <=x,这样可以保证sum – x <=k。
这里需要注意,当行远大于列的时候怎么办呢?转换成列的枚举 即可。
在代码实现上,我们只需要让 m 永远小于 n即可。这样复杂度总是为O(m^2nlog n)
/* first consider the situation matrix is 1D
we can save every sum of 0~i(0<=i<len) and binary search previous sum to find
possible result for every index, time complexity is O(NlogN).
so in 2D matrix, we can sum up all values from row i to row j and create a 1D array
to use 1D array solution.
If col number is less than row number, we can sum up all values from col i to col j
then use 1D array solution.
*/
Code:
public int maxSumSubmatrix(int[][] matrix, int target) {
int row = matrix.length;
if(row==0)return 0;
int col = matrix[0].length;
int m = Math.min(row,col);
int n = Math.max(row,col);
//indicating sum up in every row or every column
boolean colIsBig = col>row;
int res = Integer.MIN_VALUE;
for(int i = 0;i<m;i++){
int[] array = new int[n];
// sum from row j to row i
for(int j = i;j>=0;j--){
int val = 0;
TreeSet<Integer> set = new TreeSet<Integer>();
set.add(0);
//traverse every column/row and sum up
for(int k = 0;k<n;k++){
array[k]=array[k]+(colIsBig?matrix[j][k]:matrix[k][j]);
val = val + array[k];
//use TreeMap to binary search previous sum to get possible result
Integer subres = set.ceiling(val-target);
if(null!=subres){
res=Math.max(res,val-subres);
}
set.add(val);
}
}
}
return res;
}