Number of Boomerangs
Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of points (i, j, k) such that the distance between i and j equals the distance between i and k (the order of the tuple matters).
Find the number of boomerangs. You may assume that n will be at most 500 and coordinates of points are all in the range [-10000, 10000] (inclusive).
Example: Input: [[0,0],[1,0],[2,0]]
Output: 2
Explanation: The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]
Tips:
O(n^2)
不需要存具体的点,只需要知道本轮里到这个点距离相同的点的个数,然后res += val * (val - 1)即可。注意每轮结束后要清空map。
Code:
public class Solution {
public int numberOfBoomerangs(int[][] points) {
if(points == null || points.length == 0) return 0;
int res = 0;
HashMap<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < points.length; i++) {
for (int j = 0; j < points.length; j++) {
if (i == j) continue;
int d = getDistance(points[i], points[j]);
map.put(d, map.getOrDefault(d, 0) + 1);
}
for(int val : map.values()) {
res += val * (val-1);
}
map.clear();
}
return res;
}
private int getDistance(int[] a, int[] b) {
int dx = a[0] - b[0];
int dy = a[1] - b[1];
return dx*dx + dy*dy;
}
}