Find Mode in Binary Search Tree
Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than or equal to the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
For example:
Given BST [1,null,2,2],
1
\
2
/
2
return [2].
Note: If a tree has more than one mode, you can return them in any order.
Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).
Tips: Time: O(n) Space: extra O(1) 利用BST的特性,recursive中序遍历然后找众数。注意list.clear();
Code:
public class Solution {
int curCount = 1;
int maxCount = 0;
TreeNode prev;
public int[] findMode(TreeNode root) {
if (root == null) return new int[0];
List<Integer> list = new ArrayList<>();
inorder(root, list);
int[] res = new int[list.size()];
for (int i = 0; i < list.size(); i++) res[i] = list.get(i);
return res;
}
private void inorder(TreeNode root, List<Integer> list) {
if (root == null) return;
inorder(root.left, list);
if (prev != null) {
if (root.val == prev.val) curCount++;
else curCount = 1;
}
prev = new TreeNode(root.val);
if (curCount > maxCount) {
maxCount = curCount;
list.clear();
list.add(root.val);
} else if (curCount == maxCount) list.add(root.val);
inorder(root.right, list);
}
}