Product of Array Except Self
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Solve it without division and in O(n).
For example, given [1,2,3,4], return [24,12,8,6].
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
Tips:
从左乘一次,从右乘一次,每次都错开i上的数。
第一次可以得到这个数左边的所有数的积,第二次再乘上右边的就可以了。
O(n), O(1)
Given numbers [2, 3, 4, 5], regarding the third number 4, the product of array except 4 is 235 which consists of two parts: left 23 and right 5. The product is leftright. We can get lefts and rights:
Numbers: 2 3 4 5
Lefts: 2 2*3 2*3*4
Rights: 3*4*5 4*5 5
Let’s fill the empty with 1:
Numbers: 2 3 4 5
Lefts: 1 2 2*3 2*3*4
Rights: 3*4*5 4*5 5 1
We can calculate lefts and rights in 2 loops. The time complexity is O(n).
Code:
public class Solution {
public int[] productExceptSelf(int[] nums) {
int[] result = new int[nums.length];
result[0] = 1;
for (int i = 1; i < nums.length; i++) {
result[i] = result[i - 1] * nums[i - 1];
}
int right = 1;
for (int i = nums.length - 1; i >= 0; i--) {
result[i] = result[i] * right;
right = nums[i] * right;
}
return result;
}
}