Graph Valid Tree
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
For example:
Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.
Hint:
Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], what should your return? Is this case a valid tree? According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.” Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Tips:
UF方法:复杂度 O(n)
- 与Number of connected components in an Undirected Graph 非常类似,只是输出结果是boolean。
- 仍旧计算无向联通块的个数,如果最后结果为1则返回true,否则返回false。
- 不同的是在对edge做UF操作的时候需要加一个判断来判断是否构成cycle,如果构成则不是树。
if (n == 1) { return true; }
DFS和BFS方法简单贴了一下。
Code:
UF:
public class Solution {
public boolean validTree(int n, int[][] edges) {
if (n <= 1) {
return true;
}
HashMap<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++) {
map.put(i, i);
}
for (int[] edge : edges) {
int fa_x = find(edge[0], map);
int fa_y = find(edge[1], map);
if (fa_x == fa_y) {
return false;
}
if (fa_x != fa_y) {
map.put(fa_x, fa_y);
n--;
}
}
if (n == 1) {
return true;
}
return false;
}
private int find(int x, HashMap<Integer, Integer> map) {
int father = map.get(x);
while (father != map.get(father)) {
father = map.get(father);
}
//compressed:
while (x != map.get(x)) {
temp = map.get(x);
map.put(x, father);
x = temp;
}
//end
return father;
}
}
DFS:
public class Solution {
public boolean validTree(int n, int[][] edges) {
// initialize adjacency list
List<List<Integer>> adjList = new ArrayList<List<Integer>>(n);
// initialize vertices
for (int i = 0; i < n; i++)
adjList.add(i, new ArrayList<Integer>());
// add edges
for (int i = 0; i < edges.length; i++) {
int u = edges[i][0], v = edges[i][1];
adjList.get(u).add(v);
adjList.get(v).add(u);
}
boolean[] visited = new boolean[n];
// make sure there's no cycle
if (hasCycle(adjList, 0, visited, -1))
return false;
// make sure all vertices are connected
for (int i = 0; i < n; i++) {
if (!visited[i])
return false;
}
return true;
}
// check if an undirected graph has cycle started from vertex u
boolean hasCycle(List<List<Integer>> adjList, int u, boolean[] visited, int parent) {
visited[u] = true;
for (int i = 0; i < adjList.get(u).size(); i++) {
int v = adjList.get(u).get(i);
if ((visited[v] && parent != v) || (!visited[v] && hasCycle(adjList, v, visited, u)))
return true;
}
return false;
}
}
BFS:
private boolean valid(int n, int[][] edges)
{
// build the graph using adjacent list
List<Set<Integer>> graph = new ArrayList<Set<Integer>>();
for(int i = 0; i < n; i++)
graph.add(new HashSet<Integer>());
for(int[] edge : edges)
{
graph.get(edge[0]).add(edge[1]);
graph.get(edge[1]).add(edge[0]);
}
// no cycle
boolean[] visited = new boolean[n];
Queue<Integer> queue = new ArrayDeque<Integer>();
queue.add(0);
while(!queue.isEmpty())
{
int node = queue.poll();
if(visited[node])
return false;
visited[node] = true;
for(int neighbor : graph.get(node))
{
queue.offer(neighbor);
graph.get(neighbor).remove((Integer)node);
}
}
// fully connected
for(boolean result : visited)
{
if(!result)
return false;
}
return true;
}