Minimum Size Subarray Sum
Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.
More practice:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
Tips:
O(n): 两个指针, start end, end向后走,直到 sum 大于 s. 然后start向后, 直到sum 小于s. 同时更新 min值。类似于滑动窗口的形式。
O(nlogn): Since all elements are positive, the cumulative sum must be strictly increasing. Then, a subarray sum can expressed as the difference between two cumulative sum. Hence, given a start index for the cumulative sum array, the other end index can be searched using binary search.
Code:
O(n):
public class Solution {
public int minSubArrayLen(int s, int[] a) {
if (a == null || a.length == 0){
return 0;
}
int i = 0, j = 0, sum = 0, min = Integer.MAX_VALUE;
while (j < a.length) {
sum += a[j++];
while (sum >= s) {
min = Math.min(min, j - i);
sum -= a[i++];
}
}
return min == Integer.MAX_VALUE ? 0 : min;
}
}
O(nlogn):
private int solveNLogN(int s, int[] nums) {
int[] sums = new int[nums.length + 1];
for (int i = 1; i < sums.length; i++) sums[i] = sums[i - 1] + nums[i - 1];
int minLen = Integer.MAX_VALUE;
for (int i = 0; i < sums.length; i++) {
int end = binarySearch(i + 1, sums.length - 1, sums[i] + s, sums);
if (end == sums.length) break;
if (end - i < minLen) minLen = end - i;
}
return minLen == Integer.MAX_VALUE ? 0 : minLen;
}
private int binarySearch(int lo, int hi, int key, int[] sums) {
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (sums[mid] >= key){
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return lo;
}