Alien Dictionary
There is a new alien language which uses the latin alphabet. However, the order among letters are unknown to you. You receive a list of words from the dictionary, where words are sorted lexicographically by the rules of this new language. Derive the order of letters in this language.
For example, Given the following words in dictionary,
[
"wrt",
"wrf",
"er",
"ett",
"rftt"
]
The correct order is: "wertf".
Note: You may assume all letters are in lowercase.
If the order is invalid, return an empty string.
There may be multiple valid order of letters, return any one of them is fine.
Tips:
Topology Sort
首先简单介绍一下拓扑排序,这是一个能够找出有向无环图顺序的一个方法
假设我们有3条边:A->C, B->C, C->D,先将每个节点的计数器初始化为0。然后我们对遍历边时,每遇到一个边,把目的节点的计数器都加1。然后,我们再遍历一遍,找出所有计数器值还是0的节点,这些节点就是有向无环图的“根”。然后我们从根开始广度优先搜索。具体来说,搜索到某个节点时,将该节点加入结果中,然后所有被该节点指向的节点的计数器减1,在减1之后,如果某个被指向节点的计数器变成0了,那这个被指向的节点就是该节点下轮搜索的子节点。在实现的角度来看,我们可以用一个队列,这样每次从队列头拿出来一个加入结果中,同时把被这个节点指向的节点中计数器值减到0的节点也都加入队列尾中。需要注意的是,如果图是有环的,则计数器会产生断层,即某个节点的计数器永远无法清零(有环意味着有的节点被多加了1,然而遍历的时候一次只减一个1,所以导致无法归零),这样该节点也无法加入到结果中。所以我们只要判断这个结果的节点数和实际图中节点数相等,就代表无环,不相等,则代表有环。
对于这题来说,我们首先要初始化所有节点(即字母),一个是该字母指向的字母的集合(被指向的字母在字母表中处于较后的位置),一个是该字母的计数器。然后我们根据字典开始建图,但是字典中并没有显示给出边的情况,如何根据字典建图呢?其实边都暗藏在相邻两个词之间,比如abc和abd,我们比较两个词的每一位,直到第一个不一样的字母c和d,因为abd这个词在后面,所以d在字母表中应该是在c的后面。所以每两个相邻的词都能蕴含一条边的信息。在建图的同时,实际上我们也可以计数了,对于每条边,将较后的字母的计数器加1。计数时需要注意的是,我们不能将同样一条边计数两次,所以要用一个集合来排除已经计数过的边。最后,我们开始拓扑排序,从计数器为0的字母开始广度优先搜索。为了找到这些计数器为0的字母,我们还需要先遍历一遍所有的计数器。
最后,根据结果的字母个数和图中所有字母的个数,判断时候有环即可。无环直接返回结果。
Code:
public class Solution {
public String alienOrder(String[] words) {
// 节点构成的图
Map<Character, Set<Character>> graph = new HashMap<Character, Set<Character>>();
// 节点的计数器
Map<Character, Integer> indegree = new HashMap<Character, Integer>();
// 结果存在这个里面
StringBuilder order = new StringBuilder();
// 初始化图和计数器
initialize(words, graph, indegree);
// 建图并计数
buildGraphAndGetIndegree(words, graph, indegree);
// 拓扑排序的最后一步,根据计数器值广度优先搜索
topologicalSort(order, graph, indegree);
// 如果大小相等说明无环
return order.length() == indegree.size() ? order.toString() : "";
}
private void initialize(String[] words, Map<Character, Set<Character>> graph, Map<Character, Integer> indegree){
for(String word : words){
for(int i = 0; i < word.length(); i++){
char curr = word.charAt(i);
// 对每个单词的每个字母初始化计数器和图节点
if(graph.get(curr) == null){
graph.put(curr, new HashSet<Character>());
}
if(indegree.get(curr) == null){
indegree.put(curr, 0);
}
}
}
}
private void buildGraphAndGetIndegree(String[] words, Map<Character, Set<Character>> graph, Map<Character, Integer> indegree){
Set<String> edges = new HashSet<String>();
for(int i = 0; i < words.length - 1; i++){
// 每两个相邻的词进行比较
String word1 = words[i];
String word2 = words[i + 1];
for(int j = 0; j < word1.length() && j < word2.length(); j++){
char from = word1.charAt(j);
char to = word2.charAt(j);
// 如果相同则继续,找到两个单词第一个不相同的字母
if(from == to) continue;
// 如果这两个字母构成的边还没有使用过,则
if(!edges.contains(from+""+to)){
graph.get(from).add(to);
// 将后面的字母加入前面字母的Set中
indegree.put(to, indegree.get(to) + 1);
// 更新后面字母的计数器,+1
// 记录这条边已经处理过了
edges.add(from+""+to);
break;
}
}
}
}
private void topologicalSort(StringBuilder order, Map<Character, Set<Character>> graph, Map<Character, Integer> indegree){
// 广度优先搜索的队列
Queue<Character> queue = new LinkedList<Character>();
// 将有向图的根,即计数器为0的节点加入队列中
for(Character key : indegree.keySet()){
if(indegree.get(key) == 0){
queue.offer(key);
}
}
// 搜索
while(!queue.isEmpty()){
Character curr = queue.poll();
// 将队头节点加入结果中
order.append(curr);
Set<Character> set = graph.get(curr);
if(set != null){
// 对所有该节点指向的节点,更新其计数器,-1
for(Character c : set){
if (indegree.get(c) == 1) {
queue.offer(c);
}
indegree.put(c, indegree.get(c) - 1);
}
}
}
}
}