Paint House II
here are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n x k cost matrix. For example, costs[0][0] is the cost of painting house 0 with color 0; costs[1][2] is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.
Note:
All costs are positive integers.
Follow up:
Could you solve it in O(nk) runtime?
Tips:
这道题是之前那道Paint House的拓展,那道题只让用红绿蓝三种颜色来粉刷房子,而这道题让我们用k种颜色,这道题不能用之前那题的解法,会TLE。
这题的解法的思路还是用DP,但是在找不同颜色的最小值不是遍历所有不同颜色,而是用min1和min2来记录之前房子的最小和第二小的花费的颜色,如果当前房子颜色和min1相同,那么我们用min2对应的值计算,反之我们用min1对应的值,这种解法实际上也包含了求次小值的方法,感觉也是一种很棒的解题思路
Code:
public class Solution {
public int minCostII(int[][] costs) {
if (costs == null || costs.length == 0 || costs[0] == null || costs[0].length == 0) {
return 0;
}
int[] store = new int[costs[0].length];
int pre1 = 0, pre2 = 0;
int min1 = 0, min2 = 0;
for (int i = 0; i < costs.length; i++) {
pre1 = min1;
pre2 = min2;
min1 = Integer.MAX_VALUE;
min2 = Integer.MAX_VALUE;
for (int j = 0; j < costs[0].length; j++) {
if (store[j] != pre1 || pre1 == pre2) {
store[j] = costs[i][j] + pre1;
}
else store[j] = costs[i][j] + pre2;
if (store[j] <= min1) {
min2 = min1;
min1 = store[j];
}
else if (store[j] <= min2) {
min2 = store[j];
}
}
}
return min1;
}
}