Longest Palindromic Subsequence
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".
Example 2:
Input:
"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".
Tips:
判断一个字符串i到j的最长回文子串dp[i][j]只需要判断dp[i - 1][j + 1]与i j所对应字母是否相同即可。
如果相同,则为dp[i - 1][j + 1] + 2;不同,为max(dp[i + 1][j], dp[i][j - 1])。
Code:
反向DP
public class Solution {
public int longestPalindromeSubseq(String s) {
if (s == null || s.length() == 0) return 0;
int n = s.length();
int[][] dp = new int[n][n];
for (int i = n - 1; i >= 0; i--) {
dp[i][i] = 1;
for (int j = i + 1; j < n; j++) {
if (s.charAt(i) == s.charAt(j)) dp[i][j] = dp[i + 1][j - 1] + 2;
else dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
return dp[0][n - 1];
}
}
正向DP
public class Solution {
public int longestPalindromeSubseq(String s) {
if (s == null || s.length() == 0) return 0;
int n = s.length();
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) {
dp[i][i] = 1;
for (int j = i - 1; j >= 0; j--) {
if (s.charAt(i) == s.charAt(j)) dp[j][i] = dp[j + 1][i - 1] + 2;
else dp[j][i] = Math.max(dp[j + 1][i], dp[j][i - 1]);
}
}
return dp[0][n - 1];
}
}