Word Ladder
Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the word list
For example,
Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -
>
"hot" -
>
"dot" -
>
"dog" -
>
"cog",
return its length 5.
Note:
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
Tips:
BFS, 每次把当前字的每个字母换一次看在不在字典里,在且不是endWord就入队,然后再换。注意要先把beginWord和endWord加入wordList。
The time complexity for 1 directional BFS isO(N26L)
Code:
public class Solution {
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
if (wordList == null) return 0;
if (beginWord.equals(endWord)) return 1;
Queue<String> queue = new LinkedList<>();
Set<String> dict = new HashSet<>(wordList);
Set<String> set = new HashSet<>();
if (!dict.contains(endWord)) return 0;
queue.offer(beginWord);
int res = 1;
set.add(beginWord);
dict.add(beginWord);
dict.add(endWord);
while (!queue.isEmpty()) {
int size = queue.size();
for (int s = 0; s < size; s++) {
String prev = queue.poll();
for (int i = 0; i < prev.length(); i++) {
for (char c = 'a'; c <= 'z'; c++) {
String curt = prev.substring(0, i) + c + prev.substring(i + 1);
if (curt.equals(endWord)) return res + 1;
if (dict.contains(curt) && !set.contains(curt)) {
queue.offer(curt);
set.add(curt);
}
}
}
}
res++;
}
return 0;
}
}